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a b s t r a c t

We perform a combined experimental and computational investigation of the clove hitch knot. We
develop a physical model for the clove hitch by tying an elastic rod onto a rigid cylinder. In the
experiments, we characterize the mechanical performance, geometry, and stability conditions of the
knot. X-ray tomography allows us to characterize the 3D geometry of the rod centerline. These results
also serve to validate our finite element modeling (FEM), which we use to quantify the tension
profile, not accessible experimentally, along the knotted rod. We find that the clove hitch comprises
alternating segments with two types of contact regions: one where the rod is in single frictional
contact with the cylinder, and another with rod self-contact (where a rod segment pinches another
against the cylinder). In the first region, the internal tension decays exponentially (akin to the capstan
configuration), whereas, in the second, the pinch (nip) regions lead to discontinuous tension drops.
We analyze these nip regions with an even simpler model system where an elastic rod is pinched
between two rigid cylinders. Despite the complex contact geometry of this pinching experiment, we
find that the frictional behavior of our model systems still obeys the classic Amontons–Coulomb law.
Ultimately, we can regard the clove hitch knot, if tied correctly, as a functional structure enabling to
drop high tension at one extremity of a filament secured onto a rigid post, all the way to zero at the
other extremity.

© 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Knotted slender filaments are observed across scales [1], from
olymer chains [2,3] to shipping ropes [1,4]. Spontaneous
notting is often viewed as a nuisance; e.g., when altering the
eplication of DNA strands [5–7] or hindering hair combing [8]. By
ontrast, knots are also used as functional structures in shoelaces
9], surgery [10–12], and climbing [4]. Despite the empirical
nowledge amassed over centuries, modeling physical knots is
undamentally challenging due to the nontrivial interplay be-
ween topology, geometry, 3D elasticity, and friction. Whereas
not theory has a long history in mathematics [13–16], mechanics-
ased studies of physical knots remain scarce, although research
ctivity has been increasing in recent years. For example, the
echanics of overhand knots tied on elastic rods has been in-
estigated in loose configurations [17–19]. For tight knots, past
tudies have focused on purely geometric descriptions (neglecting
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elasticity and friction) [20], simplified beam-based models [21],
and 3D FEM simulations [22], but with limited power to re-
produce experimental data. Describing tight physical knots calls
for a more realistic set of ingredients, including elasticity and
friction. It is then arduous to tackle such systems due to the lack
of separation of length scales and cross-sectional deformation,
with the additional complication of contact friction. We have
recently studied some of the simplest configurations relevant
to physical knots, including the orthogonal clasp [23] and the
trefoil knot [24,25]. Nevertheless, modeling the mechanics of
more complex knots remains an open problem [26].

The clove hitch (see Fig. 1a) is a particularly interesting knot
for its wide uses in securing flexible filaments to a rigid post [4],
with the remarkable property that it is mechanically stable when
there is a sufficiently large tension difference between its two
ends. This tension-loss makes it possible to hang a heavy load
from a rigid post [4]. The classic capstan equation [27,28] de-
scribes the tension loss for an ideal filament (inextensible, in-
finitesimally thin, and zero bending stiffness) wrapped, albeit
unknotted, around a rigid cylinder. Denoting the end tensions as
Thigh > Tlow, the capstan equation predicts sliding of the filament
when Thigh/Tlow > exp(µθ ) (θ is the wrapping/contact angle, and
µ is the friction coefficient). The capstan problem has been gen-

eralized to consider elasticity and finite thickness effects [29–31].
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Fig. 1. Mechanical performance of the clove hitch knot. Photograph of (a) a clove hitch knot and (b) two loops coiled around a post, with d = 8 mm and D = 25 mm.
c) Protocol to tie the clove hitch in FEM. Nodes marked with x are fixed, whereas black and red arrows correspond to displaced and loaded nodes, respectively.
he detailed descriptions of the 7 steps are given in Section 4. (d) Force–displacement curves for the configurations, with d = 4 mm and D = 30mm. The solid lines
orrespond to the experiments (shaded regions represent the standard deviation of 5 independent runs) and the dashed lines to FEM simulations (shaded regions
epresent the uncertainty associated with the friction coefficient measurements µrc = µrr = 0.32 ± 0.02). The Thigh/Tlow curve does not start from (0, 0) due to the
re-tension; with the reference for zero displacement, ∆ = 0, set as detailed in Section 5. (For interpretation of the references to color in this figure legend, the
eader is referred to the web version of this article.)
ore recently, Grandgeorge et al. [32] have proposed a com-
rehensive framework for this problem, in excellent agreement
ith experiments. Yet, these models have not been extended
o knotted rods, as in the clove hitch. The stability of hitch
nots was discussed mathematically, focusing on topological ar-
uments [13], which were later extended for an ideal rope (zero
ending stiffness) in frictional contact [14], but the predictions
ave not yet been validated experimentally.
Here, we explore the mechanics of physical clove hitch knots

hrough a model system comprising an elastic rod tied onto
rigid cylinder. The methodology we employ builds upon our

ecent developments in Refs. [23–25,32], which we extend to
ore complex geometries and loading conditions. Combining
xperiments and FEM simulations, we characterize the geome-
ry and tension profile T (s) along the centerline of the knotted
od, analyze the contact regions, and quantify the conditions
or sliding. X-ray tomography (µCT) is employed to extract the
ull 3D geometry of the centerline, serving to validate the FEM
imulations. We find that the clove hitch contains alternating
egments of two types, depending on the nature of contact:
a) regions where the rod is in frictional contact only with the
ylinder (where T (s) decays exponentially), and (b) nip regions
with discontinuous changes in tension due to the pinching of
rod segment by another against the cylinder). These regions,
ombined, can cause the (high) tension at one end of the rod to
rop to zero if the knot is tied correctly. We analyze the tension
rop in the nip regions through a simplified model system where
n elastic rod is pinched between two rigid cylinders. Despite the
omplex contact geometry, we find that the frictional behavior of
ur model systems still obeys the Amontons–Coulomb law within
he range of parameters explored.

. Experimental rod-fabrication protocols

We developed two protocols to fabricate the elastic rods used
o tie clove hitch knots for: (a) mechanical testing, and (b) the
CT imaging. Their primary difference is that the latter contained
xial fibers and a thin outer coating of 16% less-dense mate-
ial (but similar mechanical properties) to enable segmentation
uring the post-processing of the µCT images.
(a) For mechanical testing, we cast naturally straight rods with

ircular cross-section using vinylpolysiloxane (VPS32, Elite Dou-
le 32, Zhermack; Young’s modulus E = 1.26MPa, density
2

ρ = 1160kg/m3), in straight polyurethane tubes (PUTN3.2-10-
W, PUTN6-10-W, Misumi; for inner diameters d = 2, 4mm,
respectively). Upon curing, the VPS32 rod was demolded, let rest
for 7 days to reach steady-state mechanical properties, and cut to
the desired length (9 ≤ L ≤ 80 cm). Each rod was surface-treated
with talcum powder (Milette, Migros). After a waiting period
(∼24 h), a robust Amontons–Coulomb behavior was attained
with a rod–rod kinetic friction coefficient of µrr = 0.32 ± 0.02.
The knots were tied onto rigid cylinders made of stainless steel
(diameters in the range 20 ≤ D ≤ 50 mm), whose surface was
also treated to ensure consistent rod–cylinder frictional behavior.
First, the cylinders were dip-coated by pulling them out axially
from a liquid bath of VPS32 (constant speed, 1mm/s) to deposit
a uniform film (thickness ∼ 150 µm) of the same material as
the rods [23,33]. Then, talcum powder was also applied to yield
a treated surface with rod–cylinder kinetic friction coefficient of
µrc = µrr.

(b) For µCT scanning, we adapted an existing protocol [23,25]
to fabricate structured rods optimized for tomographic imaging.
These structured rods comprised three parts: (i) a bulk core
(VPS32, cast in a straight stainless steel pipe of inner diameter
d = 8.3 mm; PSTS12A-400, Misumi), (ii) two physical fibers and
(iii) an outer coating. The fibers and the coating were made of
Solaris (Smooth-On), also a silicone rubber, of mass density ρs =

1001 kg/m3 and Young’s modulus Es = 0.32 MPa. The relatively
small thickness of both the fibers and the coating (respectively,
500 µm diameter and 150 µm thickness) compared to the rod
diameter did not affect the mechanical properties of the rod
compared to bulk VPS32. The first fiber was embedded on the
central axis of the rod, acting as a physical centerline, r(s). The
second one was also set axially, halfway between the centerline
and the outer edge of the cross-section. Note that in our previous
work [23,25], only a single central fiber was included (to measure
r(s)), whereas here, using the same fabrication technique, em-
bedding the second (eccentric) fiber enables the reconstruction
of the Cosserat frame (d̂1, d̂2, d̂3) (see Section 6.1). The outer
coating was introduced to visualize the rod–rod and rod–cylinder
contact regions, and was also produced by dip-coating [23]. For
the experiments involving µCT scanning, we used a polyacetal
rigid cylinder (D = 25 mm), whose mass density, 1410 kg/m3,
is slightly larger than both VPS32 and Solaris, thus facilitating
segmentation during post-processing. Similarly to the mechan-
ical testing case, the polyacetal cylinder was also coated and
surface-treated to ensure the same frictional properties stated
above.
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. FEM simulations

Our FEM simulations were conducted using ABAQUS/STANDARD
ollowing a dynamic implicit analysis and considering geomet-
ically nonlinear deformation. A naturally straight rod (diameter
= 8.6 mm) was meshed with reduced hybrid 3D solid elements
C3D8RH). The number of elements in the cross-section ranged
etween ∼ 100 and ∼ 400, sufficient to reproduce experimental
esults [24]. The typical size of the mesh was ∼ 0.4–0.8 mm.
e also meshed the outer surface of the rigid and stationary

ylinder with rigid elements (R3D4), with ∼ 1.2 mm for the
esh size. The rod material was modeled as an incompressible
eo-Hookean solid (using the experimental value of E). The rod–
od and rod–cylinder contacts were modeled using Amontons–
oulomb friction law; frictional contacts was enforced through
ormal penalty forces, combined with tangential frictional forces,
ith a prescribed dynamic friction coefficient [23,24].

. Tying the knot in the experiments and simulations

The clove hitch knot consists of two successive half-hitches
ied as follows: (i) one end of the rod is looped around the
ylinder, (ii) passed back over itself to form a cross, (iii) threaded
nder itself, (iv) and the system is pulled tight. In Fig. 1(a), we
how a photograph of a clove hitch knot. For the µCT imaging
Section 6.1) additional care had to be given to the tying process
o ensure reproducibility of the final geometry. First, the knot
as tied loosely, with the rod barely contacting the cylinder. The
ystem was then placed in an ultrasonic bath (VWR, USC1200TH)
ith a water–soap mixture (Palmolive Original, ≃20% in volume),

or 3 min (at frequency 45kHz and temperature 25 ◦C). This step
estabilized any still-remaining frictional contacts, ensuring that
he equilibrium configuration was reached. After removal from
he bath, the system was air-dried at room temperature for ≈ 12
ours.
In Fig. 1(c), we present the sequence of 7 steps followed to

ie the same knot in FEM. (1) We placed the center of mass of
he rod above the rigid cylinder (Fig. 1c1). (2) The centerline
id-point was fixed and the two extremities were displaced to

orm an arch (Fig. 1c2). (3) Three points of the centerline were
ixed and the two extremities were moved horizontally to wrap
he rod around the cylinder (Fig. 1c3). (4) The rod extremities
ere displaced upwards, while fixing three node positions, one at
he middle and the other two underneath the cylinder (Fig. 1c4).
5) While fixing the three nodes of the previous step, the middle
oint was displaced upwards, and the two rod extremities were
hreaded underneath the opened gap, to attain the clove hitch
opology (Fig. 1c5). (6) All nodes were released, expect for the
wo rod extremities, which were loaded by two forces of the
ame magnitude but opposite directions to yield a symmetric
not (Fig. 1c5). (7) Asymmetric configurations were realized by
educing one of the loading forces (Fig. 1c6). Note that a similar
ying protocol has been introduced in the context of robotics [34].

. Mechanical testing of the clove hitch knot

We proceed by reporting results on the mechanical perfor-
ance of the knot, using a universal testing machine (Instron
943) to obtain force–displacement curves. The knot is tied with a
PS32 rod (d = 4 mm) on a rigid cylinder (diameter D = 30 mm)
sing the procedure described above. One end of the knot (at
= L) is connected to a dead load Tlow = 0.069N (≃ 7g), while
he other (at s = 0) is attached to the testing machine to measure
he tensile load, Thigh, as a function of the relative displacement,
. To ensure reproducibility, the initial configuration of the knot
∆ = 0) was pre-tensioned as follows. The end at s = L was

3

oaded by an extra weight of 50 g, such that the total dead load
as Tlow = 0.559N (≃ 57g). The loading-end at s = 0 was
hen displaced until Thigh = Tlow = 0.559N, at which point the
xtra weight of 50 g was removed, returning the dead load to
low = 0.069N (≃ 7g). Having completed this pre-tensioning,

mechanical testing yielded Thigh(∆) curves. An identical protocol
as implemented in the FEM simulations.
In Fig. 1(d), we plot the rescaled force Thigh/Tlow across the

love hitch knot, as a function of ∆. The loading force increases
early monotonically, albeit nonlinearly, with increasing ∆. For
≲ 8 mm, there is progressive stretching of the rod within the

not but with no relative motion between the rod surface and the
ylinder (no sliding); the behavior is linear. Beyond ∆ ≈ 8 mm,
here is frictional sliding between the rod and the cylinder as the
love hitch is tightened further. The curve exhibits a small peak
t the onset of sliding motion. In this second regime, Thigh/Tlow

continues to increase significantly, even if at a lower rate than
that of the initial linear regime. Excellent agreement is found
between the experiments and FEM (solid and dashed pink lines,
respectively), serving as a first step in validating the numerics.

To highlight the unique mechanical performance of the clove
hitch, we also tested a similar, but topologically simpler, two-
loops configuration; an elastic rod was wrapped twice around
the cylinder (without self-crossings). This configuration can be
regarded as a capstan [32] with 4π wrapping angle. The exper-
imental Thigh/Tlow curve for this two-loops configuration (blue
solid line in Fig. 1c) exhibit a peak at ∆ ≃ 30 mm, below which
the rod stretches, without sliding with respect to the cylinder. For
∆ ≳ 30 mm, frictional sliding does occur as the configuration
is tightened further. Note that no peak was observed in FEM
(blue dashed line) since only dynamic friction was considered.
For this two-loops case, both experimental and FEM curves tend
to a force plateau (above ∆ ≳ 30 mm), as expected from the
capstan equation [27,28]. By contrast, for the clove hitch, the
Thigh/Tlow curve is monotonically increasing (without a plateau
in the explored range of ∆) such that the level of tightening
can be adjusted with ∆, evidencing the superior mechanical
performance of the knotted versus the two-loop configuration.
The superior functionality of the clove hitch originates from the
nontrivial coupling between geometry and elasticity. In Section 7,
we will demonstrate that the self-crossing regions are central to
the overall load transmission along the knotted rod.

6. Validation of the FEM: Geometry and mechanics

Next, we further validate our computational framework against
experiments, emphasizing both geometry and mechanics. For
simplicity, we turn to a symmetrically-loaded configuration (Thigh
= Tlow). In Section 6.1, we focus on the 3D geometry of the rod
by quantifying the coordinates of the centerline r(s), as well as
curvatures and twist. Then, in Section 6.2, we complete the FEM
validation with mechanical tests for this configuration.

6.1. Geometry of the knot extracted from X-ray tomography

To enable µCT scanning, a VPS32 rod (d = 8.6 mm and
L = 350 mm) was fabricated using protocol (b) described in
Section 2. A clove hitch knot was then tied onto a polyacetal cylin-
der following the procedure presented in Section 4. The cylinder
axis was placed on the z = 0 plane and the two ends were
clamped at r(0) = (0, 0, 20) mm and r(L) = (0, 0, −20) mm.
The clove hitch samples were scanned using the X-ray tomograph
(µCT 100, Scanco). The 3D images were reconstructed using a
built-in software package provided by Scanco, together with a
post-processed algorithm developed in-house [23].
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In Fig. 2(a), we present a representative example of an ex-
erimental µCT reconstruction, with the corresponding FEM-
omputed configuration in Fig. 2(b). In Fig. 2(c), we characterize
he 3D geometry of the knot, plotting the coordinates of the (de-
ormed) centerline, r(s) = (x(s), y(s), z(s)), along the normalized
arc length s/(2πR), where R ≡ (d + D)/2 is the effective radius.

e find excellent quantitative agreement between experiments
nd FEM (solid and dashed lines, respectively).
Both in experiments and FEM, we also measured the Darboux

ector, Ω , which represents the curvature and twist, as defined
ext. Let d̂3 be the tangent vector of the centerline, d̂3(s) =
′(s), where (·)′ ≡ d(·)/ds. At each value of s, two orthonormal
ectors (d̂1, d̂2), are adapted onto the cross-section (normal to

ˆ 3). The triad d̂a (a = 1, 2, 3), also called directors, is known as the
osserat frame [35]. The basis of the Cosserat frame d̂a evolves
rotates) along s as

ˆ
′

a = Ω × d̂a (a = 1, 2, 3), (1)

here Ω is the Darboux vector, whose components, Ωa = Ω · d̂a,
epresent the rotation-rates of the Cosserat frame along s, with
espect to d̂a. After measuring the profiles d̂a(s), the components
f the Darboux vector are computed by arranging (1):

a = εabc d̂
′

b · d̂c, (2)

here εabc is Eddington’s epsilon.
Thus, to compute Ωa(s), we first need d̂a(s), reconstructed as

ollows. From the µCT data, we compute the centerline-tangent,
ˆ 3, from the differentiation of r(s), as d̂3 ≃ {r(s + ds) − r(s)}/ds.
hen, we chose d̂1(s) to point from the centerline to the eccentric
olaris fiber (see Section 2) and compute d̂2 ≡ d̂3 × d̂1, ensuring
hat the (d̂1, d̂2, d̂3) basis is orthonormal. We iterate this proce-
ure from s = 0 to s = L, in increments of ds = 0.16 mm,
sing an in-house algorithm developed previously [23,25]. The

EM-computed Cosserat frame was obtained similarly, with ds set

4

y the mesh size. Finally, with the d̂a(s) data at hand, from both
xperiments and FEM, the components of the Darboux vector,
a(s), could be readily computed using (2).
In Fig. 2(d), we compare the µCT (solid lines) and FEM (dashed

ines) data for the normalized profile of the Darboux vector and
he total curvature, κ ≡ (Ω2

1 + Ω2
2 )

1/2. The fidelity of the FEM
o quantitatively predict the experimental data is remarkable,
espite the complexity of the Ωa(s) profiles. The data in Fig. 2(d)
ighlights the following properties of Ωa(s). First, the twist, Ω3,
s significantly smaller than the other two components, Ω1 and
2. This finding may inform future reduced-order models (be-
ond the scope of the present study) of the clove hitch knot by
ssuming Ω3/κ ≪ 1. Second, in the regions rod–cylinder contact,
he total curvature κ is nearly 1/R (κR ∼ 1, dashed green line
n Fig. 2d), meaning that the rod wraps the cylinder with its
angent normal to the cylinder axis. Third, Ω2 remains negative
ll along s, whereas Ω1 changes sign half-way, further conveying
he complexity of the geometry.

.2. Mechanical test of the symmetric clove hitch knot

The detailed characterization in the previous section estab-
ished an important step in the FEM validation, but was purely
eometrical. Next, we further attest the capability of the FEM to
redict the mechanics of the clove hitch under symmetric load-
ng, using the experimental apparatus shown in Fig. 2(e). The rigid
ylinder was fixed and the two ends of the rod were loaded by
he mechanical testing machine via two nylon filaments (StroftN,
aku GmbH), realigned by two air bearings (IBS Precision En-
ineering), and attached to a rigid bar. This bar was displaced
pwards (imposed end-to-end distance H), while measuring the
nd force 2Tend (Tend on each extremity). In Fig. 2(f), we plot the
escaled force–displacement curve, with Tend/(EA) as a function
f the end-to-end extension e ≡ H − (L − 4πR) [17] with the
ross-sectional area A = πd2/4. Note that e = 0 corresponds
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i

o the case of the centerline wrapping twice around the cylinder.
e find that the end-force increases monotonically with e, mostly
ominated by the stretching of the material, and the experiments
re, again, in excellent agreement with FEM.

. Tension-loss in the clove hitch knot

The predictive power of the FEM to reproduce the experimen-
al results demonstrated above gives us confidence to now rely
urely on FEM to access a quantity and conditions not accessible
xperimentally. Specifically, we explore the internal tension pro-
ile along the rod, T (s), and the effect of the rod–cylinder friction
oefficient. The latter is challenging to vary systematically in the
xperiments without introducing additional artifacts.
Going beyond the symmetric configuration considered above,

e now consider the more practically relevant asymmetric case,
ith a free extremity (Tlow = 0). The simulations were performed
sing the following set of parameters: fixed geometry (d, D, L) =

4, 30, 374) mm, rod–rod friction coefficient µrr = 0.3, loading
ondition Thigh = 1.47 N, and three values of the rod–cylinder
riction coefficient µrc = {0.2, 0.3, 0.4}. The internal tension
(s) ≡ −F (s) · d̂3(s) is computed from the resultant internal
orce F (s) = F (L) +

∫ L
s p(s′)ds′ acting on the cross-section at s,

xerted by portion of the rod with s̃ > s on the portion with
˜ < s, accounting for the contact forces per unit-length p(s) [32].

representative example (for µrc = 0.3) is shown in Fig. 3(a),
here we plot value of T (s)/Thigh on the 3D reconstruction of the
od centerline. We find that the high-tension at one end decays
o zero past the knot.

In Fig. 3(b), we compare T (s) for the three cases with different
alues of µrc, while fixing µrr. The three curves exhibit two
mportant features: (i) T (s) decays exponentially in the regions of
od–cylinder contact (cf. dashed lines in Fig. 3b); and (ii) T (s) is
on-exponential in the regions with (rod–rod) self-contact. There
re three non-exponential regions, two of which are drops in
(s) found at the entrance, s/(2πR) ≈ 0.1, and exit, s/(2πR) ≈

.25, of the knot. In the third non-exponential region, in the
iddle of the knot, 1.0 < s/(2πR) < 1.5, the tension increases
ecause the direction of the contact frictional forces is opposite
o that of the other regions where T (s) decreases. The decay
ate of the exponential depends on µrc, as expected from the
lassical Capstan problem [27,28]. Indeed, the capstan problem
ith a finite-thickness rod [36] predicts that, away from the

oading-ends,

(s) ∼ exp
(
−µeff

s )
, (3)
R
5

Fig. 4. Experimental stability phase diagram of the clove hitch knot. The dashed
line is predicted from Ref. [14].

where µeff ≡ {−(1 + D̃) +

√
(1 + D̃)2 + 4µ2

rcD̃}/(2µrc) is the
effective friction coefficient and D̃ = D/d. The predictions from
(3) are plotted in Fig. 3(b) as dashed lines, whose slopes are
in excellent agreement with FEM. Hence, the tension decay of
the clove hitch along the rod–cylinder contact regions can be
interpreted under the framework of the capstan problem.

Predicting T (s) in the rod–rod contact (nip) regions involves, at
east, the following two theoretical challenges. First, the contact
roblem is non-local; the internal force, F (s), is computed once
he contact force density p(s′) for s ≤ s′ ≤ L is known. Yet,
he force density at the rod–rod contact p(s) is affected by the
emaining contact regions in 0 ≤ s′′ ≤ s (via the law of action-
eaction). Second, the nip regions involve large cross-sectional
eformation. Therefore, centerline-based (Kirchhoff) theories [35]
ecome inappropriate [23,32], requiring material nonlinearities
o be taken into account.

Whereas addressing the above theoretical challenges is be-
ond the scope of the present study, we have performed two
dditional sets of experiments to gain further physical insight into
hese issues, which are addressed next, in Sections 8 and 9.

. Stability of the clove hitch knot

The issue of non-locality of the contact has been partially
ncorporated in past literature [14], predicting that, when the
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Fig. 5. Friction measurement of pinched elastic rod. (a) Experimental setup. The elastic rod is pinched by two rigid cylinders. One cylinder is attached with the
ertical air bearing to a counter weight. (b) Zoomed view of the pinched elastic rod. (c) The experimental data on the friction force F∗

t as a function of the normal
oad 2Fn . The dashed and solid lines fit the smaller load Fn; the slope represents their effective friction coefficient µ. (d) The rescaled friction force F∗

t /(2µFn) versus
the rescaled normal load Fn/(πEdD/4). The shaded regions represent 4Fn/πEdD ≤ 0.05 (see Section 9).
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hitch knot slips, the larger load of the two extremities, Thigh, is
linear to the other load Tlow. Thus, when Tlow = 0, the clove
hitch knot is expected to slip at Thigh = 0. In other words, the
clove hitch slips independently of the rod or cylinder diameters.
To test this prediction, we have experimentally characterized the
stability of the clove hitch with a free end (Tlow = 0). First,
we tied the clove hitch knot loosely onto the cylinder. Then,
we attached a calibrated weight Thigh to the other extremity at
s = 0 and observed whether the knot was stable or became
undone (failure). Each run was repeated five times under the
same conditions to test reproducibility. The knot was deemed
stable if slippage did not occur in any of the five runs. Failure was
reported if the knot became undone at least once.

In Fig. 4, we plot the stability diagram for these experiments,
normalizing Thigh by the axial stiffness EA. The phase boundary
between stable and failure behavior (the critical load for slippage)
depends on the rescaled diameter d/2R. These results are decid-
edly not in agreement with the predictions from Ref. [14] (vertical
dashed line in Fig. 4), thereby calling for more detailed theoretical
analysis to model the clove hitch knot.

9. Pinching of an elastic rod

Finally, we study the nip regions and attempt to gain in-
sight on how the cross-sectional deformation may affect the
rod-sliding behavior. We considered a further-simplified config-
uration where a short VPS32 rod segment (length 9 cm) was
sandwiched (pinched) between two VPS-coated rigid cylinders
(diameter D = 8 mm). The axis of the rod was set perpendicularly
to the axes of the rigid cylinders. The experimental apparatus is
shown in Fig. 5(a, b). The lower cylinder was fixed. The upper
cylinder was connected to a counter weight, through a linear
air bearing (IBS Precision Engineering), an inextensible filament,
and two pulleys. As such, the upper cylinder applies a known
normal load, F , onto the rod. The rod was connected, through a
n

6

filament/pulley system, to the mechanical testing machine mea-
suring the tangential force, F∗

t , required to overcome the frictional
forces (slippage onset). This setup was designed to mimic the
contact geometry near the free-end of the clove hitch, where the
tension T (s) drops to zero (see open triangles in Fig. 3b).

In Fig. 5(c), we plot F∗
t vs. Fn, for two VPS32 rods (d =

4, 8} mm). At low values of Fn, the critical tangential force
or sliding is described well by Amontons–Coulomb’s law F∗

t =

µFn (both contact surfaces contribute to the sliding, hence, the
actor of 2), as conveyed by the linear fit. However, this behavior
hanges for larger values of Fn. To better examine how F∗

t de-
iates from Amontons–Coulomb’s behavior, in Fig. 5(d), we plot
he ratio F∗

t /(2µFn) as a function of the rescaled normal load
Fn/(πEdD). Results from the equivalent FEM simulations are also
ncluded in the plot. Whereas Amontons–Coulomb law holds for
Fn/(πEdD) ≲ 0.1, we find significant deviations beyond this
oint, presumably due to geometrically nonlinear deformation of
he pinched cross-section.

It is interesting to note that this violation of the Amontons–
oulomb’s behavior does not seem to play a significant role in
he stability experiment (Section 8). Indeed, from Fig. 4, we found
hat the upper bound of the critical sliding force is expected at
high/EA ≈ 0.3, for the range of parameters considered. Also, from
he tension profiles in Fig. 3(b), the dead load Thigh exerted at
= 0 decays toward nearly ≈ 18% between the clamped end
nd the last nip-region near the free end. Hence, translating this
alue into the dimensionless force yields 4Fn/(πEdD) ≈ 0.05
vertical solid line in Fig. 5d), which still lies within the regime
here Amontons–Coulomb law is valid (shaded region in Fig. 5c).
his estimation suggests that, for future theoretical analysis of the
love hitch, and potentially for other knots, it may be sufficient
o consider Amontons–Coulomb to model frictional interactions.
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0. Conclusion

Combining precision experiments and FEM simulations, we
tudied the mechanics of the clove hitch knot, regarding it as
functional structure capable of transforming high tension in a
od down to zero. As such, these knots are particularly useful
o tie a weight from a rigid cylinder. The topology of the clove
itch, and the nip regions with rod–rod contact, are central to
heir mechanical behavior, as demonstrated by contrast to the
wo-loops (capstan-like) configuration.

We characterized the complex 3D geometry of the clove hitch
not using µCT, experimentally measuring the centerline position
nd the Darboux vector components, in excellent agreement with
EM. To the best of our knowledge, these data are the first
f their kind in the rod mechanics community. We then relied
n FEM to quantify the tension profile, which is not readily
ccessible experimentally, uncovering the two qualitatively dif-
erent regions. First, we saw a capstan-like exponential decay
f the tension, consistently with literature [36]. Secondly, the
ip regions were found to be responsible for (non-exponential)
ension drops, underlying the unique mechanical performance of
his knot. We also characterized the stability of the clove hitch,
inding that the failure onset deviates from existing simplified
odels. Investigation of a simpler model system suggested that
montons–Coulomb’s frictional behavior is appropriate, at least
n the range of parameters explored.

Although the clove hitch is one of the simplest, albeit among
he most useful, functional knots, the coupling between elasticity,
riction, and nonlinear geometry leads to extremely rich mechan-
cs. We hope that our results will help to continue opening the
oor for future theoretical models that go beyond the relatively
imple configurations studied to date.
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