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We present a methodology to simulate the mechanics of knots in
elastic rods using geometrically nonlinear, full three-dimensional
(3D) finite element analysis. We focus on the mechanical behavior
of knots in tight configurations, for which the full 3D deformation
must be taken into account. To setup the topology of our knotted
structures, we apply a sequence of prescribed displacement steps
to the centerline of an initially straight rod that is meshed with
3D solid elements. Self-contact is enforced with a normal penalty
force combined with Coulomb friction. As test cases, we investigate
both overhand and figure-of-eight knots. Our simulations are vali-
dated with precision model experiments, combining rod fabrication
and X-ray tomography. Even if the focus is given to the methods,
our results reveal that 3D deformation of tight elastic knots is
central to their mechanical response. These findings contrast to a
previous analysis of loose knots, for which 1D centerline-based
rod theories sufficed for a predictive understanding. Our method
serves as a robust framework to access complex mechanical

behavior of tightly knotted structures that are not readily available
through experiments nor existing reduced-order theories.
[DOI: 10.1115/1.4049023]
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1 Introduction
Knots are ubiquitous mechanical links used to establish kine-

matic constraints between filaments via friction. Knotted filaments
are utilized regularly in shoelaces [1], sailing and climbing ropes,
and surgical threads [2–4]. Accordingly, there have been numerous
efforts to quantify the mechanical performance of knots with
various topologies, through experiments [3,5,6], numerical simula-
tions [6–9], and modeling based on geometric strings (i.e., neglect-
ing elasticity) [5,10–13] and elastic rods [14–16]. The
one-dimensional (1D) elastic rod models derived in Refs. [14–16]
were based on the theory of elastic Kirchhoff rods, with a centerline
description. The fundamental basis of this rod theory is the assump-
tion of negligible cross-sectional deformations and the inextensibil-
ity of the centerline of the rod. These simplifying assumptions allow
for an understanding of elastic knots, especially in their loose con-
figurations. However, due to the complex interplay between various
modes of three-dimensional deformation that emerge in functional
knots, Kirchhoff-like rod models cannot capture the mechanical
behavior of tight elastic knots.
Here, we present a computational framework that allows for the

systematic investigation of tight elastic knots based on a fully 3D
finite element method (FEM). We implement our simulation frame-
work for the illustrative cases of overhand and figure-of-eight knots.
In parallel, the numerical results are validated against experiments
using precise rod fabrication, mechanical testing, and tomographic
imaging. We clarify the prominent role of 3D deformation in tight
elastic knot configurations that we contrast with the existing theory
of loose knots. Throughout, we place more emphasis on the method
that we have employed, rather than on results, hoping that this tech-
nical brief will instigate further analyses in future research.
Our paper is organized as follows. First, in Sec. 2, we identify the

key parameters of overhand knots and provide an overview of the
theory for the mechanical behavior of loose knots developed previ-
ously by Audoly et al. [14]. Next, in Sec. 3, we focus on the numer-
ical FEM procedure to tie a knot. In Sec. 4, we detail the
experimental protocol to fabricate elastomeric rods and the tools
that were developed to validate the numerical results. Further, we
compare numerical and experimental results, such as force-
displacement curves and curvature profiles along the knotted
rod’s centerline in Sec. 5. We also compare these numerical and
experimental results to the theoretical prediction provided in
Ref. [14]. Finally, we provide some concluding comments in Sec. 6.

2 Definition of the Problem
In Fig. 1, we present a representative snapshot of an elastic over-

hand knot, the central topic of this technical brief. The tying of a
figure-of-eight knot, which we have also addressed, will be dis-
cussed in Sec. 5. An elastic rod of Young’s modulus E, undeformed
length L0, undeformed diameter D, and dynamic Coulomb friction
coefficient μ for self-contact is deformed into a simple overhand
knot configuration. The centerline position of the elastic knot is
denoted as r(s), where s is the arc-length coordinate of the centerline
of the rod. The two extremities of the rod are aligned along the
z-axis. While one extremity is clamped, the other is free to twist
about the z-axis. The end-to-end distance between the extremities
is L, and the corresponding tensile force required for tightening
is T. Following the work of Jawed et al. [16], we define the normal-
ized end-to-end shortening, �e = e/D = (L0 − L)/D, as the single
control variable of this problem. The geometric variable �e is the
primary indicator for the tightness of elastic knots. The value of �e
decreases as the knot is tightened. We will be interested in

1Corresponding author.
Contributed by the Applied Mechanics Division of ASME for publication in the

JOURNAL OF APPLIED MECHANICS. Manuscript received September 29, 2020; final
manuscript received October 30, 2020; published online November 20, 2020. Assoc.
Editor: Yonggang Huang.

Journal of Applied Mechanics FEBRUARY 2021, Vol. 88 / 024501-1Copyright © 2020 by ASME

mailto:cbaek@mit.edu
mailto:paul.johanns@epfl.ch
mailto:tomohiko.sano@epfl.ch
mailto:paul.grandgeorge@epfl.ch
mailto:pedro.reis@epfl.ch


quantifying the centerline position, r(s; �e), and the applied tension,
T(�e), as functions of �e.
For completeness of our discussion, we briefly review an existing

model for the mechanical response of loose elastic overhand knots
based on the theory of Kirchhoff rods. According to the previous
work by Audoly et al. [14], the tensile force, T, of a loose overhand
knot can be expressed as

TD2

4B
=

π2

2�e2
±

0.492μπ1.5

�e1.5
(1)

where B= πE D4/64 is the bending stiffness of the rod. The first
term in Eq. (1) represents the elastic bending contribution, and
the second term arises due to dynamic friction in the regions of self-
contact. The positive (or negative) sign of the second term corre-
sponds to the tying (or untying) of the knot when �̇e < 0 (or when
�̇e > 0). Note that, in the limit of �e → 0, Eq. (1) predicts the diver-
gence of T, which is a manifestation of the inextensibility constraint
of the underlying Kirchhoff rod theory. Reference [14] reported that
Eq. (1) is valid for loose-knot, in the �e ≳ 100 regime.
In the present study, we seek to extend the scope of past studies

on the mechanics of knots by focusing on tight configurations. Spe-
cifically, we address the mechanics of tight overhand knots, primar-
ily in the �e ≲ 100 regime, as well as tight figure-of-eight knots.
Furthermore, our study will consider situations with moderate fric-
tion (μ= 0.32), whereas Ref. [14] was limited to weak friction (μ≃
0.1). The mechanical response of knots in tight configurations is
significantly more complex than that for loose knots. Hence,
instead of following the reduced-order analytical methods of past
studies, we develop a methodology to simulate knotted structures
in filaments. For this purpose, we employ the framework of fully
three-dimensional (3D) finite element analyses.

3 Finite Element Procedure for Tying Elastic Knots
Our simulation approach is based on the FEM using the commer-

cially available software package ABAQUS/STANDARD. We conducted
a nonlinear dynamic-implicit analysis to capture the geometrically
nonlinear deformation of right knots tied into an elastic rod. An ini-
tially straight elastic rod was meshed with reduced hybrid 3D solid

elements (C3D8RH). The number of elements per cross section of
the rod was ∼100. Along the axial direction, the level of discretiza-
tion was varied depending on the aspect ratio of the rod, to ensure
that the elements maintained a regular cubic shape.
Even if we could have incorporated different material models in

our FEM simulations, we focused exclusively on elastic materials.
The rationale for this choice is twofold. First, the experimental
results used to validate the simulations (presented in Secs. 4
and 5) were obtained using rods made out of vinylpolysiloxane
(Young’s modulus, E= 1.25 MPa; VPS-32, Zhermack). VPS is an
elastomeric material that we modeled as a neo-Hookean incom-
pressible solid. The goal was to have a direct map between the simu-
lations and experiments for quantitative validation. Secondly, the
focus on the elastic case allowed us to emphasize the high-fidelity
of the simulations in terms of the topological preparation protocol
and the appropriateness of the frictional contact interactions,
without further complexifying the problem with additional constitu-
tive ingredients.
Self-contact frictional interactions in the rod were taken into

account by enforcing a normal penalty force combined with a tan-
gential frictional force, with a prescribed dynamic Coulomb friction
coefficient, μ= 0 (frictionless case) or μ= 0.32 (frictional case),
noting that we studied both frictionless and frictional elastic
knots. For the frictional case, the chosen value of μ was chosen
based on a thorough experimental characterization that we have per-
formed recently [17].
Throughout the simulations, the extremities of the rod are kine-

matically tied to a pair of control nodes located at each of the
ends. The topology of the knotted rod was established by applying
a sequence of prescribed displacements and rotations to these
control nodes. We adopted a loading sequence from previous
work on reduced FE modeling of knots [8]. The sequence of simu-
lation snapshots in Fig. 2 illustrates the tying process of an overhand
knot, involving the following four steps:

(i) First, we bent the rod into the configuration depicted in
Fig. 2(a), while fixing the position of a pair of auxiliary
nodes (denoted as x-shaped symbols in the figure) on the
material centerline of the rod. At this stage, the extremities
of the rod faced the −x-direction.

(ii) Second, the extremities of the rod were displaced inside the
loop (see Fig. 2(b)), now facing the ±z-direction, thereby
establishing the knotted configuration. During this second
step, the positional constraints applied to the auxiliary

T

Fig. 1 An elastic rod of undeformed length, L0, and undeformed
diameter, D, is knotted into a simple overhand knot configura-
tion. The end-to-end distance, L, is regarded as the control vari-
able. The corresponding tensile force, T, and the position of the
material centerline of the knot, r(s; �e), are measured.

(a) (b) (c)

(d ) (e) (f )

Fig. 2 Numerical protocol and pathing procedure to tie an over-
hand knot. (a) An originally straight rod is first bent to fix a pair of
intermediary points (x-shaped symbols). Then, its extremities are
pulled (arrows) along the ±z directions. (b) As a result, the topol-
ogy of the knotted configuration is established. (c) We then
remove the positional constraints, formerly the x-shaped
symbols in (a) and (b), to obtain an equilibrium configuration.
(d)–(f) Having established the topology of the knot, we then
tighten it by controlling the positions of the extremities to set a
given value of the end-to-end shortening, e.
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nodes were still enforced so that those points lay on the
xy-plane.

(iii) Third, we removed the imposed constraints on the auxiliary
points to allow for the equilibrium configuration of the knot
to be achieved (see Fig. 2(c)).

(iv) Finally, we tightened the knot (see Figs. 2(d ) to 2(e)) by
continuously decreasing the normalized end-to-end shorten-
ing, �e, at the constant speed, ė = −0.5mm/s, and measured
the quantities of interest, including the tensile force, T(�e),
and the configuration of the knot, r(s; �e).

The typical computational cost for a full knot-tying simulations
of an overhand knot, in which the normalized end-to-end shortening
decreased gradually from �e = 20 to �e = −10 (in steps of Δ�e = 0.15),
is approximately 60 h on a desktop workstation with an octa-core
processor (Intel Xeon processor 6136 3.20 GHz) and 32 GB of
RAM.

4 Experimental Procedure
In Sec. 5, we will validate the numerical protocol introduced

above against precision experiments, the details of which are pro-
vided next. To obtain the precision experimental data used for vali-
dation, we (i) measured the macroscopic mechanical response
through the relation between the tensile force T and end-to-end
shortening e, and (ii) thoroughly quantified coordinates of the cen-
terline of the knotted polymeric rod. The elastic rods used for either
the experiments in (i) or (ii) required slightly different fabrication
protocols, as we detail next.
For the experiments in (i)—mechanical characterization of T

versus e—we cast our rod out of the vinylpolysiloxane (VPS32,
Elite Double 32, Zhermack, Young’s modulus E= 1.25MPa,
density ρ= 1.160 kg/m3), inside a straight steel cylinder (SS
pipes, part number PSTS12A-400, Misumi). This cylindrical
mold had an inner diameter of D= 8.3mm and length 400 mm.
Upon curing of the VPS32 (in ∼30 min), we unmolded the solid
elastomeric rod and let it rest for 7 days to ensure the steady-state
of its mechanical properties. After this resting period, we cut our
undeformed (straight) elastomeric rod to the desired length, L0.
We then tied the appropriate knot (overhand or figure-of-eight)
into the rod and performed tensile tests under clamped boundary
conditions. We used a universal testing machine (Instron 5943,
Norwood, MA) to obtain the T(e) experimental curves. During
testing, the bottom clamp was mounted onto a rotary air-bearing
to ensure a twist-free boundary condition there and enable a
direct comparison to Ref. [14]. In this mechanical characterization
experiments, we explored both the frictionless and frictional
cases. For the frictionless case, a few drops of silicone oil
(Bluesil 47V1000, Slitech, dynamic viscosity 1 Pa·s) were applied
to the contact regions of the knot. The viscosity of the silicone oil
generated a thin lubrication layer that reduced local tangential
forces significantly. For the experiments in the frictional case,
after curing of the VPS, the surface of the rod was conditioned
with talcum powder (Milette baby powder, Migros, Switzerland)
that was adsorbed by the VPS surface during the following 24
h. Gently wiping off the excess talcum powder from the surface
with a fine cloth ensured Amontons-Coulomb frictional behavior,
with a robust dynamic friction coefficient, μ= 0.32± 0.03. A
more detailed account of the experimental characterization of the
frictional properties of our elastic rods can be found in Ref. [17].
For the experiments in (ii)—quantification of the location of the

physical centerlines of the knotted rod—the rod fabrication protocol
presented above had to be slightly modified to make them compat-
ible with our imaging technique. We obtained volumetric images of
the elastic knots using X-ray micro-computed tomography
(μCT100, Scanco Medical, Switzerland). Measuring the location
of the physical centerline of the elastomeric rods in the 3D
images required us to introduce a thin concentric physical centerline
fiber (diameter 500 μm) inside the VPS32 rods. To fabricate this
concentric centerline fiber, we added a nylon filament that was

taut straight, concentrically to the steel cylinder (the mold), before
casting. After curing of the VPS32, we pulled out the nylon fila-
ment, leaving a thin and hollow cylindrical void along the central
axis. Next, we filled the void left by the removed nylon filament
with a different silicone polymer (Solaris, Smooth-On; Young’s
modulus 340 kPa, and density 1001 kg/m3). The density contrast
between VPS32 and Solaris was sufficient to allow for differentia-
tion and segmentation between the regions of these two polymers—
physical centerline (Solaris) and the bulk of the rod (VPS32)—on
the 3D μCT images of the elastic knots. Finally, the 3D images of
the elastic knots were post-processed to extract the precise locations
of the physical centerline coordinates. We performed the centerline
tracking using a MATLAB code developed in-house that was based on
an edge-detection algorithm. This code involved the iterative con-
struction of orthogonal frames adapted to each point of the center-
line. The automatic localization of the physical concentric Solaris
fiber was based on the density contrast between Solaris and
VPS32, using an edge-and-centroid detection algorithm.

5 Results
Having introduced the computational framework for the tying of

tight knots in elastic knots, we first validate our FEM procedure by
comparing the numerical results to the one-dimensional model
of Ref. [14], for overhand knots in a loose configuration. We con-
sider an elastic rod with the following parameters: L0= 2213 mm,
D= 8.3 mm, and μ= 0. For this loose configuration, the end-to-end
shortening is varied within the range 50 ≤ �e ≤ 200, which falls into
the borderline region between the loose-knot and the tight-knot
regime, as defined in Ref. [14]. In Fig. 3, we plot the dimensionless
tensile force, TD2/(4B), as a function of �e, obtained from the FEM
simulations (solid line), onto which we juxtapose the prediction
from Eq. (1) (dotted line), with μ= 0. As �e increases, we find that
the FEM results approach the theoretical prediction Ref. [14],
albeit with a slight offset (the FEM result is 11% higher than the
theory at �e = 200). We were not able to extend the simulations
into the regime of validity of the theory at even higher values
of �e, since this would have required an excessive computational
power due to an unavoidable finer mesh.
We now quantify the applied tension required to tie an overhand

elastic knot in the tight-knot regime. Here, we consider a shorter rod
(initial length, L0= 350 mm) than the ones used above, in order to
more effectively investigate the mechanical behavior of a tight over-
hand knot. The range of the values of end-to-end shortening consid-
ered in this tight regime is −10 ≤ �e ≤ 30, far below the threshold of
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End-to-end shortening,

Fig. 3 Normalized tensile force, TD2/(4B), versus the normalized
end-to-end shortening, �e for frictionless rod of length L0=
800 mm, obtained from the FEM simulations (solid line). The
data from the Kirchhoff rod model of an overhand knot
(Ref. [14]) is plotted as a dotted line.
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validity of Eq. (1) (�e ∼ 100). In Fig. 4(a), we plot the dimensionless
tensile force, TD2/4B, as a function of �e, from the precision exper-
iments (dashed lines) and the FEM simulations (solid lines). The
frictionless (μ= 0) and frictional cases for overhand knots (μ=
0.32) are addressed and contrasted in both the experiments and
simulations. The excellent agreement between the FEM results
and the experimental data validates our numerical knot-tying proce-
dure. By contrast, we observe a significant deviation between the
numerical/experimental data and the prediction from Eq. (1) for
loose knots, regardless of whether friction is present or not. As men-
tioned in Sec. 2, this discrepancy does not come as a surprise, given
the significantly lower range of �e that we have considered for our
tight configurations compared to the regime of validity of the
theory underlying Eq. (1). In Fig. 4(b), we present snapshots of
three different configurations of the frictionless elastic knot (μ=
0) from both experiments and FEM simulations, with
�e = {−5, 5, 15}; the corresponding data points are presented in
Fig. 4(a). The FEM simulations are in excellent agreement with
the experiments, for the range of tightness we considered.
Inspired by the success reported above in quantifying the tensile

forces during knot-tying, we further quantify the shape of tight
elastic overhand knots by contrasting the FEM simulations to pre-
cision X-ray micro-computed tomography (μCT). A material cen-
terline of the elastic knot, r(s; �e), is digitized from the volumetric
image acquired from the μCT, as well as from the FEM simulations.
Again, we considered both the frictionless (μ= 0.0) and frictional
(μ = 0.32) cases. The initial length of the rod was L0= 130 mm,

the initial diameter was D= 8.3 mm, and the end-to-end shortening
was �e = 9.58. In Fig. 5, we plot the magnitude of the dimensionless

curvature of the material centerline, κ = kD = ‖ d2r(s;∼�e)
ds2 ‖D, as a

function of the dimensionless arc-length coordinate, s= S/D.
Again, a striking agreement is found between the experiments
(dotted lines) and FEM (solid lines), in both the frictionless
(Fig. 5(a)) and frictional cases (Fig. 5(b)). In Fig. 5(a), we also
overlay the profile of the centerline curvature for the frictionless
case (dashed line) predicted theoretically by the Kirchhoff rod
model in Ref. [14]. Surprisingly, the theoretical prediction yields
a result that describes the experimental and simulation data remark-
ably well, albeit with small quantitative differences (the averaged
difference in the curvature between the simulation data and the pre-
diction is ≃ 10%). Again, these deviations are expected, given the
full 3D nature of our problem couple to the fact that the theory in
Ref. [14] was developed for loose knots, whereas we are consider-
ing tight configurations.
As another example to demonstrate the broader applicability of

our protocol, in Fig. 6, we present a comparison for a different
topology; a figure-of-eight knot, with friction coefficients μ= {0,
0.32}. The rest configuration of the rod is L0= 350 mm and D=
8.3 mm. In Fig. 6(a), we provide the mechanical response of the
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Fig. 4 (a) Normalized tensile force versus normalized
end-to-end shortening for both frictionless (μ=0) and frictional
(μ=0.32) elastic knots. The experiments (dashed lines) and
FEM simulations (solid lines) were conducted for a rod with
L0 =350 mm and D=8.3 mm. The theoretical predictions
(dotted lines) correspond to Eq. (1) from Ref. [14]. While the
FEM simulations are in excellent agreement with the experi-
ments, both deviate from the theoretical prediction in the
regime of lower values of the end-to-end shortening. (b) Snap-
shots obtained from the experiments (top) and FEM simulations
(bottom) for overhand knots at different levels of tightness:
(i) �e= 15, (ii) �e= 5, and (iii) �e=−5. The same points (i), (ii), and
(iii) are marked in the plot in (a).
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Fig. 5 Profiles of the centerline curvature for an overhand knot
with normalized end-to-end shortening, �e= 9.58, obtained from
the FEM simulations (solid lines), the experiments (dotted
lines), and the theoretical prediction from Eq. (1) (dashed line).
The elastic rod onto which an overhand knot is tied has an
initial length of L0=130 mm and a self-contact friction coefficient
of (a) μ=0 and (b) μ=0.32.
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figure-of-eight knot by plotting the dimensionless tensile force as a
function of the dimensionless end-to-end shortening, whose range
for the FEM simulations is within −10 ≤ �e ≤ 29.5. The corre-
sponding experimental results for the same parameters are also
included. In Fig. 6(b), we present four representative configurations
of the FEM knot for μ= 0.32 and �e = {20, 10, 0, −10}. The data
points corresponding to each configuration in Fig. 6(b) are
located on the loading curve in Fig. 6(a). Again, the agreement
between the FEM and the experiment is remarkable for both the
frictionless and the frictional cases, further confirming the validity
and high-fidelity of our FEM knot-tying approach.

6 Conclusion
We have presented a 3D FEM procedure to investigate tight

elastic knots, both in the frictionless and frictional cases. As illustra-
tive examples, we focused on the tight configurations of a simple
overhand knot and a figure-of-eight knot. Our numerical results
were found to be in excellent agreement with precision model
experiments while showing deviations from an existing 1D theory
for loose elastic knots [14]. Our experimentally validated computa-
tional framework could be leveraged in the future to investigate
quantities of tight elastic knots that are not readily available
through experiments; e.g., the shape of the contact region, and

cross-sectional deformation. Moreover, the versatility of the numer-
ics should enable research efforts on knotted filaments with various
physical ingredients; e.g., different constitutive descriptions, and
friction models. We hope that the numerical framework that we
have introduced will open new opportunities for more in-depth
investigations of the mechanics of tight elastic knots.
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Fig. 6 FEM and experimental results for the tying of a
figure-of-eight knot on a rod of initial length L0=350 mm, and
initial diameter D=8.3 mm. (a) Tensile force versus end-to-end
shortening of figure-of-eight knots (frictionless and frictional
case). (b) Snapshots of the configurations of a computed
figure-of-eight knot for consecutive values of the normalized
end-to-end shortening, �e= {20, 10, 0, −10}. The corresponding
data points, labeled as (i)–(iv), are indicated in (a).
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